Tianlong Chen 1Yi Shen 1,*Li Lin 1Huiyun Lin 1[ ... ]Buhong Li 1,4,**
Author Affiliations
Abstract
1 MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, P. R. China
2 Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, P. R. China
3 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
4 School of Physics and OptoElectronic Engineering, Hainan University, Haikou 570228, P. R. China
Photodynamic therapy (PDT) has been increasingly used in the clinical treatment of neoplastic, inflammatory and infectious skin diseases. However, the generation of reactive oxygen species (ROS) may induce undesired side effects in normal tissue surrounding the treatment lesion, which is a big challenge for the clinical application of PDT. To date, (–)-Epigallocatechin gallate (EGCG) has been widely proposed as an antiangiogenic and antitumor agent for the protection of normal tissue from ROS-mediated oxidative damage. This study evaluates the regulation ability of EGCG for photodynamic damage of blood vessels during hematoporphyrin monomethyl ether (Hemoporfin)-mediated PDT. The quenching rate constants of EGCG for the triplet-state Hemoporfin and photosensitized 1O2 generation are determined to be 6.8×108 M?1S?1 and 1.5×108 M?1S?1, respectively. The vasoconstriction of blood vessels in the protected region treated with EGCG hydrogel after PDT is lower than that of the control region treated with pure hydrogel, suggesting an efficiently reduced photodamage of Hemoporfin for blood vessels treated with EGCG. This study indicates that EGCG is an efficient quencher for triplet-state Hemoporfin and 1O2, and EGCG could be potentially used to reduce the undesired photodamage of normal tissue in clinical PDT.
(–)-Epigallocatechin gallate (EGCG) photodynamic therapy hemoporfin singlet oxygen blood vessel vasoconstriction 
Journal of Innovative Optical Health Sciences
2024, 17(3): 2450002
Mingyuan Ye 1†Xiaorui Hao 2†Jinfeng Zeng 3Lin Li 4,*[ ... ]Yuhan Wu 1,6,****
Author Affiliations
Abstract
1 School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
2 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
3 College of Pharmacy, Xinjiang Medical University, Engineering Research Center of Xinjiang and Central Asian Medicine Resources (Ministry of Education), Urumqi 830000, China
4 Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
5 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
6 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
Anode materials are an essential part of lithium-ion batteries (LIBs), which determine the performance and safety of LIBs. Currently, graphite, as the anode material of commercial LIBs, is limited by its low theoretical capacity of 372 mA·h·g?1, thus hindering further development toward high-capacity and large-scale applications. Alkaline earth metal iron-based oxides are considered a promising candidate to replace graphite because of their low preparation cost, good thermal stability, superior stability, and high electrochemical performance. Nonetheless, many issues and challenges remain to be addressed. Herein, we systematically summarize the research progress of alkaline earth metal iron-based oxides as LIB anodes. Meanwhile, the material and structural properties, synthesis methods, electrochemical reaction mechanisms, and improvement strategies are introduced. Finally, existing challenges and future research directions are discussed to accelerate their practical application in commercial LIBs.
alkali-earth metal iron-based oxides anodes lithium-ion batteries electrochemical energy storage 
Journal of Semiconductors
2024, 45(2): 021801
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京卫星环境工程研究所,北京 100094
3 北京空间飞行器总体设计部,北京 100094
4 北京宇航系统工程研究所,北京 100076
太阳上层大气,即日冕、过渡区和色球,是由炽热的高度动态的磁化等离子体构成,其中高度电离的离子发射出丰富的极紫外谱线。空间太阳极紫外光谱成像观测对于捕获太阳上层大气中爆发活动的动态物理演化过程,以及实现对大气等离子体特征参数的精确测量具有重要的意义。然而现有的极紫外光谱成像仪器只能针对太阳上层大气的一个或两个目标区域进行成像观测,缺乏采用单一仪器对整个太阳上层大气区域在大空间和宽波段尺度范围内的光谱进行诊断的能力,严重制约了人们对太阳爆发活动中的能量及物质输运过程的理解。为了利用单个仪器实现对日冕、过渡区和色球的高分辨率同时诊断观测,本文提出并设计了一款同时工作在17∼21 nm、70∼80 nm和95∼105 nm三个波段的太阳极紫外成像光谱仪,该仪器基于非罗兰圆结构下的椭球面变线距(EVLS)光栅像差校正理论,采用狭缝扫描式成像光谱结构,实现了具有大离轴狭缝视场的高空间、高光谱分辨的消像散光谱成像。基于蒙特卡罗统计模拟方法对太阳极紫外三波段成像光谱仪的最优模型开展光线追迹仿真实验,仿真结果表明,所设计的成像光谱仪取得了良好的光栅像差校正效果,系统空间分辨率优于0.6″,光谱分辨率在17∼21 nm波段优于0.006 nm,在70∼80 nm和95∼105 nm波段优于0.008 nm。本文研究对我国未来的太阳极紫外光谱成像仪器的发展和研制具有重要的理论意义,对我国未来的太阳空间探测任务的型号遴选具有重要的参考价值。
太阳空间探测 太阳极紫外 成像光谱仪 光栅像差校正 光线追迹 
光学学报
2024, 44(6): 0622001
沈文杰 1邢阳光 1,*黄一帆 1,**彭吉龙 2[ ... ]李林 1
作者单位
摘要
1 北京理工大学光电学院,北京 100081
2 北京卫星环境工程研究所,北京 100094
3 北京空间飞行器总体设计部,北京 100094
4 北京宇航系统工程研究所,北京 100076
提出了一款工作在Ne VII 46.52 nm谱线的新型三级次无狭缝成像光谱仪,该仪器采用两个超环面等线距光栅作为衍射元件,其中单个光栅仅工作于一个级次,这解决了现有三级次仪器使用单个光栅同时工作于三个级次的弊端,显著提升了系统校正离轴光栅像差的能力,结合光谱数据反演算法可以实现24′×24′视场下的高空间(1.547″)和高光谱分辨率(0.0078 nm)观测。
成像系统 太阳空间观测 太阳极紫外 成像光谱仪 无狭缝 超环面等线距光栅 
光学学报
2024, 44(6): 0611001
作者单位
摘要
1 海南师范大学物理与电子工程学院海南省激光技术与光电子功能材料重点实验室,半导体激光海南省国际联合研究中心,海南 海口 571158
2 新加坡南洋理工大学电气与电子工程学院,新加坡 639798
3 新加坡南洋理工大学淡马锡实验室,新加坡 637553
4 中国科学院半导体研究所半导体超晶格国家重点实验室,北京 100083
5 长春理工大学高功率半导体激光器国家重点实验室,吉林 长春 130022
2 μm波长附近可调谐半导体激光器在分子光谱学和光通信领域中有广阔的应用前景。基于绝缘体上硅(SOI)平台,对2 μm波长附近可调谐半导体激光器的外腔部分进行了设计优化。分析了不同尺寸光波导的模式损耗特性、单个微环谐振腔受总线波导耦合间距的作用以及总线波导光反馈终端对外腔半导体激光器性能的影响。并提出了一种具有高工艺兼容度的多模环形光波导光反馈结构。所设计的可调谐半导体激光器硅基外腔可通过环形波导上的镍铬合金微加热器进行0.1 nm/K的高精度调谐,对单个微加热器施加3.2 V电压时,调谐范围可达66 nm(1967~2033 nm)。
硅光集成 可调谐外腔半导体激光器 环形谐振腔 光波导终端 
中国激光
2024, 51(6): 0601010
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing, China
3 China Jiliang University, College of Optical and Electronic Technology, Hangzhou, China
4 Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
5 Chinese Academy of Sciences (CAS), Shanghai Institute of Optics and Fine Mechanics (SIOM), State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai, China
Achieving spatiotemporal control of light at high speeds presents immense possibilities for various applications in communication, computation, metrology, and sensing. The integration of subwavelength metasurfaces and optical waveguides offers a promising approach to manipulate light across multiple degrees of freedom at high speed in compact photonic integrated circuit (PIC) devices. Here, we demonstrate a gigahertz-rate-switchable wavefront shaping by integrating metasurface, lithium niobate on insulator photonic waveguides, and electrodes within a PIC device. As proofs of concept, we showcase the generation of a focus beam with reconfigurable arbitrary polarizations, switchable focusing with lateral focal positions and focal length, orbital angular momentum light beams as well as Bessel beams. Our measurements indicate modulation speeds of up to the gigahertz rate. This integrated platform offers a versatile and efficient means of controlling the light field at high speed within a compact system, paving the way for potential applications in optical communication, computation, sensing, and imaging.
metasurface photonic integrated circuit lithium niobate on insulator high-speed modulation 
Advanced Photonics
2024, 6(1): 016005
作者单位
摘要
中国科学院宁波材料技术与工程研究所,激光极端制造研究中心,浙江 宁波 315201
随着多材料激光增材制造科学与技术的不断进步,一体化制备极端使役性能的大物性差异材料与元件成为可能。但大物性差异多材料增材制造成形界面问题尤为突出。根据大物性差异多材料激光增材制造成形的进展,笔者聚焦大物性差异材料的界面问题和界面优化方法,分别以激光吸收率差异、热物性差异、界面生成脆性相分类阐述界面问题,同时在工艺优化、功能梯度设计、复合制造三个方面对界面优化方法进行总结,为实现大物性差异材料的高质量成形提供参考。同时,阐述了大物性差异多材料激光增材制造建模与仿真研究进展,以期通过宏观和介观尺度模拟指导大物性差异材料的激光增材制造成形参数优化。最后对多材料激光增材制造大物性差异材料的应用和共性科学问题及技术挑战进行了展望与思考。
激光技术 大物性差异材料 多材料激光增材制造 界面缺陷 界面优化 
中国激光
2024, 51(1): 0102003
作者单位
摘要
北京控制工程研究所 空间光电测量与感知实验室,北京100190
为避免双天线InSAR系统基线测量动态监测过程中引入误差,影响基线测量精度,对基线长度与角度测量过程中的可能误差进行定性与定量分析。采用坐标变换法建立系统误差数学模型,明确测量系统的误差来源。提出误差灵敏度概念,对误差项进行定量计算,并对每一自由度的误差源进行灵敏度分析,进一步形成综合误差定量合成结果。根据误差灵敏度系数给出一组精度反演误差分配案例。最后,依据蒙特卡洛法在MATLAB平台闭环验证精度量化分配方法的可行性与稳定性。仿真分析结果表明,激光视觉三轴位置的测量精度要求为300 μm(3σ),三轴角度的测量精度要求为50''(3σ),即可满足基线长度精度1 mm(1.6σ),基线角度精度2''(1.6σ)。通过本方法可由测量环境条件输入直接获得基线测量的精度,根据灵敏度系数对误差分配进行反演可以得到系统最优布局,其结果可为测量系统的方案设计与精度分解提供有效指导。
干涉合成孔径雷达 基线测量 误差模型 灵敏度分析 interferometric synthetic aperture radar(InSAR) baseline measurement error model sensitivity analysis 
光学 精密工程
2024, 32(1): 33
作者单位
摘要
1 沈阳工业大学 建筑与土木工程学院, 沈阳 110870
2 中铁十九局集团 第五工程有限公司, 大连 116100
利用落锤冲击试验设备对石英砂岩进行循环冲击加载, 在0.3~0.6 m各冲击高度下均选取3个试样, 每个试样进行8次循环冲击, 应变率分别选取为26.33 s-1、29.7 s-1、32.03 s-1和35.17 s-1, 研究中应变率下石英砂岩受循环冲击加载下的力学性能。通过对试验数据进行分析总结, 讨论循环加载次数对石英砂岩动态抗压强度、弹性模量和能量效率的影响以及中应变率下石英砂岩的破坏过程。结果表明:不同中应变率条件下, 第8次循环冲击加载作用下试件的动态抗压强度均较第一次循环冲击减小约13 MPa, 抵抗变形能力减弱, 同时弹性模量明显降低, 试件动态抗压强度与弹性模量表现出正向相关关系; 从能量角度研究, 在8次循环冲击加载后, 试样耗散能、能量效率、单位体积耗散能均有提高, 其中在冲击能为70.27 J效果最为明显, 岩石耗散能提高6 J、能量效率提高8.8%、单位体积耗散能增幅50%; 从破碎分形角度进行研究, 中应变率下岩石破碎形态有劈裂破坏、边缘崩落破坏、块状破坏和粉碎破坏, 当应变率由26.33 s-1增大至35.17 s-1时, 试样碎块块度平均粒径特征值由24.49 mm减小到21.15 mm; 分形维数由1.07增加至1.75, 岩石分形维数呈线性增大趋势。
中应变率 循环冲击 破坏特性 medium strain rate cyclic shock failure behavior 
爆破
2023, 40(2): 29
作者单位
摘要
1 大连交通大学机车车辆工程学院,大连 116000
2 陆军装甲兵学院车辆工程系,北京 100072
3 北京信息科技大学现代测控技术教育部重点实验室,北京 100192
涡流脉冲热像( Eddy current pulsed thermography,ECPT)技术是一种新型的无损检测方法,广泛应用于金属材料结构的检测,但该技术常依赖人工经验提取特征进行裂纹检测与识别,自动化和智能性化程度不足。结合涡流脉冲热像技术以及循环神经网络(Recurrent Neural Network,RNN)的特性,提出一种基于双向长短期记忆网络(Bidirectional Long Short-Term Memory Network,Bi-LSTM)金属疲劳裂纹涡流脉冲热像分类识别方法。实验通过涡流加热装置对被测金属试件进行感应加热,使用红外热像采集装置对金属平板试件进行实时的数据采集,获得图像序列并制作数据集。运用设计的 Bi-LSTM模型增强特征向量中的时序信息,对不同尺寸裂纹的热图像进行训练并测试。实验分析表明, Bi-LSTM网络可有效应用于金属疲劳裂纹检测与识别,针对现有裂纹检测准确率可达到 100%,优于传统神经网络和其他深度学习的模型,具有更高的识别精度。
涡流脉冲热像技术 双向长短期记忆网络 裂纹识别 特征提取 eddy current pulsed thermography, Bi-LSTM, crack i 
红外技术
2023, 45(9): 982

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!